PRODUCTION & INSTALLATION OF SOLAR PANELS

DIRECTION: Green Energy

© 2025 Del Mar Energy Inc

THE FUTURE OF ENERGY TRANSITION TO SOLAR GENERATION

Renewable energy is one of the key drivers of sustainable development. In recent years, the shift toward renewable sources has accelerated, and solar energy has taken a leading position due to its accessibility and efficiency

Over the past decade, the installed capacity of solar power plants has increased more than 15-fold, exceeding 1 TW. However, its share in global energy consumption currently stands at only 6%, highlighting the tremendous growth potential of the industry

The expansion of solar energy is not only an economically sound solution but also a strategic step toward reducing dependence on fossil fuels and minimizing environmental impact Del Mar Energy Inc plays a leading role in this process by offering advanced technologies for the production and installation of solar panels. Our innovative solutions deliver maximum efficiency, reliability, and resilience under any climatic conditions

WE CREATE TECHNOLOGICAL SOLUTIONS THAT TRANSFORM THE ENERGY SECTOR

ENERGY INDEPENDENCE

Accessible technologies that enable businesses and homeowners to reduce reliance on traditional energy sources and shield themselves from rising utility rates

Del Mar Energy Inc is committed to making solar energy the primary source of electricity by combining technological excellence with sustainable development

The mission of Del Mar Energy Inc is to accelerate the global transition to renewable energy by providing reliable, innovative, and affordable solar panels for industrial, commercial, and residential use

GROWTH STRATEGY AND TECHNOLOGICAL LEADERSHIP

EXPANDING GLOBAL PRESENCE

Del Mar Energy Inc is actively increasing its market share in solar energy by entering new regions in Europe, Asia, and Latin America. The development of international partnerships and localization of production enable us to tailor our solutions to various climatic and economic conditions

INNOVATIVE DEVELOPMENT & EFFICIENCY ENHANCEMENT

We invest in research and development (R&D) to create solar panels with improved performance, extended lifespan, and resilience to extreme weather conditions

SCALING PRODUCTION

The launch of new manufacturing capacities and the implementation of automated processes help reduce production costs, making solar energy more accessible to the mass market

ENVIRONMENTAL SUSTAINABILITY

We integrate the principles of carbon-neutral production by reducing CO₂ emissions, minimizing waste, and employing material recycling at every stage of manufacturing

Z

 \searrow

A Rapidly Growing Market

Solar energy is one of the fastest-growing segments within renewable energy. Over the past 10 years, the installed capacity of solar power plants has exceeded 1 TW, accounting for 6% of global energy consumption. According to the International Energy Agency, this share is projected to increase to 30% by 2050, positioning solar energy as a primary source of electricity

Prospects and Advantages of Solar Energy

Key Advantages:

- Unlimited Resource: Sunlight is available everywhere
- Environmental Safety: No CO₂ emissions and minimal impact on the environment
- Low Operating Costs: Solar panels require minimal maintenance and can operate for over 35 years
- Versatility: Suitable for residential, commercial, and industrial applications

Advanced Technologies

Modern solar panels achieve efficiencies of up to 23% thanks to the use of monocrystalline photovoltaic cells. Integration with energy storage systems ensures uninterrupted power supply even during nighttime or periods of low solar activity

KEY STAGES OF PRODUCTION

Silicon crystals form the foundation of photovoltaic cells

Two types are used:

Monocrystalline: Delivers high efficiency and long lifespan Polycrystalline: More cost-effective and commonly used in mass production

Cutting and Processing

Diamond saws slice the crystals into ultra-thin wafers, enhancing their light transmission

Cell Assembly

The wafers are assembled into modules, with a conductive layer applied and a protective coating added

Protective Coating and Structural Reinforcement

Anti-reflective tempered glass is used to boost resistance against impacts, temperature fluctuations, and UV radiation

Final Testing

Each module undergoes rigorous testing to evaluate efficiency, temperature resilience, moisture resistance, and mechanical strength

EFFICIENCY AND RELIABILITY OF SOLAR PANELS

PERFORMANCE IN ALL CONDITIONS

Modern solar panels deliver stable energy output across diverse climatic zones—from northern regions with low sunlight to hot areas with intense solar radiation

KEY TECHNICAL PARAMETERS:

- Efficiency up to 23% Monocrystalline panels maximize the use of sunlight
- Operating Temperature Range -50°C to +70°C Ensures stable performance in both extreme cold and heat
- Anti-Reflective Coating

Enhances light transmission even in cloudy conditions or if the surface is dirty

• Ultra-Durable Glass

Provides robust protection against hail, strong winds, and mechanical stress

• Lifespan over 35 Years Minimal maintenance costs and high durability

OPTIMIZING GENERATION IN CHALLENGING CONDITIONS

Solar panel performance can decline due to shading, dust, or an unfavorable tilt angle

MODERN SOLUTIONS INCLUDE:

- Sun-Tracking Systems
 Automatically adjust the tilt, boosting output by 20–30%
- High-Sensitivity Photovoltaic Cells
 Ensure effective performance under diffused light

• Integration with Energy Storage

Enables the use of stored energy at night and during periods of low solar activity

TYPES OF SOLAR PANELS

MONOCRYSTALLINE PANELS

Efficiency up to 23% – the most efficient on the market

Durability – lifespan of over 35 years

High performance even under low-light conditions

Ideal for installations in regions with limited sunlight

POLYCRYSTALLINE PANELS

Efficiency up to 18% – slightly less efficient but more affordable

Suitable for large-scale installations where cost per watt is critical

Best suited for regions with high solar activity

THIN-FILM PANELS

Lightweight and flexible, making them ideal for unconventional applications

Capable of operating under diffused light and high humidity conditions

Lower efficiency – typically around 10–12%

BIFACIAL PANELS

Generate energy from both the front and back sides

Enhanced efficiency – up to 30% additional output thanks to reflected light

Ideal for installation at industrial sites and large solar power plants

AND THEIR FEATURES

INSTALLATION AND INTEGRATION OF SOLAR PANELS Key installation steps

SITE ANALYSIS

Evaluate energy consumption and determine the optimal system capacity

Choose a location with maximum solar insolation

SYSTEM DESIGN

Define the wiring layout and panel placement

Calculate the optimal tilt angle and assess the need for tracking systems

GRID CONNECTION AND SYSTEM CONFIGURATION

Install inverters to convert DC to AC power

Integrate the system with the building's energy network or a centralized grid

Verify energy output under various operating conditions

Implement monitoring systems to track performance

SOLAR TRACKERS

Automatically adjust the tilt angle to boost generation by 20–30%

SMART CONTROLLERS

Analyze energy consumption and optimize system performance

MOUNTING STRUCTURES AND FASTENINGS

Install supporting structures (roof, facade, or ground mounts)

Secure the panels to protect them from weather and mechanical stress

INNOVATIVE INSTALLATION TECHNOLOGIES

HYBRID SYSTEMS

Combine solar panels with energy storage for autonomous operation

FINANCING SOLAR PROJECTS

Loans, Grants, And Subsidies

GOVERNMENT SUPPORT AND SUBSIDIES

Governments in many countries encourage the development of solar energy by offering tax incentives, subsidies, and reimbursement programs. In the U.S., the Investment Tax Credit (ITC) allows businesses and homeowners to offset a portion of the costs of installing solar panels. Similar programs exist in Europe, Canada, and Australia

BANK LOANS AND GREEN FINANCING

Financial institutions offer green loans with low interest rates for investments in solar energy. In recent years, major banks and international organizations such as the World Bank and the European Investment Bank have allocated billions of dollars to fund renewable energy projects

PRIVATE INVESTMENTS AND CROWDFUNDING

The growing interest in ESG (Environmental, Social, and Governance) investments has led to an increase in private capital in the solar industry. Large funds and venture capital investors finance solar projects expecting long-term stable returns. Additionally, crowdfunding platforms are emerging, allowing private investors to participate in the development of solar power plants

LEASING AND POWER PURCHASE AGREEMENTS (PPA)

For businesses and homeowners, leasing models allow access to solar panels without upfront costs. Long-term Power Purchase Agreements (PPAs) enable companies to buy electricity directly from solar farms at fixed prices, reducing exposure to market fluctuations

ENVIRONMENTAL IMPACT OF SOLAR ENERGY

REDUCING CO₂ EMISSIONS

Unlike traditional power plants, solar panels generate electricity without harmful emissions. One megawatt-hour (MWh) of solar energy reduces carbon dioxide emissions by 1,500 pounds, making it an effective solution for lowering the global carbon footprint

WATER CONSERVATION

Thermal power plants consume vast amounts of water for cooling, whereas solar power generation requires no water resources, which is especially crucial for arid regions

GOVERNMENT SUPPORT

Many countries are implementing environmental regulations and incentive programs aimed at

expanding solar energy and reducing greenhouse gas emissions

A RENEWABLE AND SAFE ENERGY SOURCE

Solar energy is inexhaustible and does not harm the environment during generation. It reduces dependence on fossil fuels and supports the transition to sustainable energy solutions

APPLICATIONS OF SOLAR PANELS ACROSS DIFFERENT SECTORS

INDUSTRIAL SECTOR

Solar energy helps businesses reduce electricity costs and improve energy efficiency. Panels are installed on factories, logistics centers, and warehouses, ensuring stable and uninterrupted power supply

COMMERCIAL REAL ESTATE

Shopping malls, office buildings, and hotels utilize solar panels to lower operational costs. Energy storage integration enhances self-sufficiency and minimizes reliance on external power grids

RESIDENTIAL HOMES AND FARMS

Homeowners benefit from lower utility bills and protection from rising electricity rates. Farmers use solar panels to power irrigation systems, lighting, and automated crop management

PUBLIC AND MUNICIPAL PROJECTS

Urban infrastructure, including street lighting, transportation hubs, and public facilities, is increasingly adopting solar energy to cut government expenses and reduce carbon emissions

BARRIERS TO SOLAR ENERGY DEVELOPMENT AND SOLUTIONS

High Initial Investment Costs

Although the cost of solar panels has dropped significantly over the past decade, installation and infrastructure expenses remain a barrier to widespread adoption

Solution – Government subsidies, tax incentives, and leasing models allow businesses and homeowners to benefit from solar energy without large upfront investments

Volatile Material Costs

The prices of silicon, lithium, and rare earth metals used in solar panels and batteries are subject to market fluctuations

Solution – The development of alternative materials such as perovskites and the localization of manufacturing to reduce reliance on global supply chains

Limited Performance at Night and During Low Sunlight

Solar panels do not generate electricity at night, and their efficiency decreases on cloudy days

Solution – Energy storage systems (ESS), integration with hybrid energy grids, and the development of solar-to-hydrogen technologies that store excess energy as hydrogen for later use

Underdeveloped Infrastructure

In many regions, power grids are not equipped to handle distributed solar generation, limiting new solar installations

Solution – Modernizing the grid, implementing smart energy systems, and expanding peer-to-peer energy trading, allowing consumers to exchange excess electricity directly

Regulatory and Bureaucratic Barriers

In some countries, obtaining permits for solar installations and grid connections can take months or even years

Solution – Simplifying regulations, standardizing approval processes, and implementing digital platforms for faster documentation and permitting

NEW CONCEPTS AND TECHNOLOGIES

TRANSPARENT SOLAR PANELS

Research into transparent photovoltaic elements enables the integration of solar panels into building windows, facades, and even smartphone screens. These technologies are currently in testing and could eventually replace conventional glass surfaces, generating energy without altering architectural aesthetics

STRATOSPHERIC SOLAR STATIONS

Scientists are developing concepts for solar power stations in the stratosphere, where sunlight is more intense than on Earth's surface. These stations could transmit energy wirelessly to the ground. Similar research is being conducted for satellite-based solar energy, where orbiting solar farms could supply electricity to remote regions

SOLAR-TO-HYDROGEN TECHNOLOGIES

Hybrid solar systems use excess solar energy to produce hydrogen, which can be utilized in energy storage and transportation. This solves the issue of intermittent energy production and enhances the versatility of solar power plants

QUANTUM DOTS AND NANOMATERIALS

Quantum dot technology can increase solar panel efficiency beyond 40% by capturing a wider spectrum of sunlight. Meanwhile, advances in flexible nanomaterials could lead to ultra-lightweight solar panels that can be embedded in textiles, vehicles, and household appliances

SMART ENERGY SYSTEMS

In the future, solar power will integrate into Smart Grids, where each consumer can become an energy producer, selling surplus electricity directly to others through blockchain-based platforms. This shift will create a decentralized energy system, reducing reliance on traditional power grids

HOW SOLAR ENERGY IS TRANSFORMING THE MARKET AND CREATING NEW BUSINESS MODELS

DECENTRALIZED **ENERGY SYSTEMS**

- Traditionally, energy supply relied on large power plants and centralized grids
- With the rise of solar power generation, localized energy systems (microgrids) are emerging, allowing homes, businesses, and farms to both consume and sell excess electricity

PEER-TO-PEER (P2P) ENERGY TRADING

New technologies eliminate intermediaries by enabling solar panel owners to sell electricity directly to neighbors or businesses via blockchainbased platforms, automating payments and consumption tracking

VIRTUAL POWER PLANTS (VPPS)

Interconnected solar panels create a Virtual Power Plant (VPP), enabling energy distribution between users, grid stabilization, and participation in the energy market as full-scale producers

SMART CITIES AND ENERGY INDEPENDENCE

Solar technology is becoming the foundation of smart cities, providing power for transportation, lighting, and essential infrastructure. This reduces dependence on centralized grids and enhances urban energy efficiency

HYBRID SOLUTIONS FOR BUSINESSES

Companies are adopting hybrid energy systems, combining solar power with battery storage and traditional energy sources. This approach reduces costs and enhances resilience against energy price fluctuations

SOLAR ENERGY IN URBAN INFRASTRUCTURE

ENERGY-EFFICIENT CITIES

Solar panels are playing a vital role in smart city development, powering buildings, transportation, and street lighting. Integrating renewable energy sources helps reduce grid strain and lower municipal costs

ROOFTOP SOLAR POWER PLANTS

High-rise buildings and commercial centers are increasingly integrating solar panels into their architectural designs. This cuts electricity costs and utilizes rooftop space for energy generation

SOLAR-POWERED TRANSPORTATION

Innovations in solar technology enable charging stations for electric vehicles and autonomous public transport to operate entirely on solar energy. Some buses are already equipped with integrated solar panels to extend their range

SOLAR STREET LIGHTING

Standalone solar-powered streetlights reduce municipal grid demand and provide lighting in remote areas without costly infrastructure expansions. These systems include energy storage, ensuring continuous operation even during cloudy days

ENVIRONMENTAL AND ECONOMIC BENEFITS

Solar energy adoption in cities reduces CO₂ emissions, lowers reliance on centralized power grids, and allows municipalities to reallocate budgets towards infrastructure development and sustainability initiatives

EFFICIENCY IMPROVEMENTS IN SOLAR CELLS

Modern solar panels have reached 23% efficiency, but new developments in perovskite cells and multilayer structures are expected to push this figure to 30-35% in the coming years. This will allow smaller panels to generate the same amount of power, optimizing space and cost

ADVANCEMENTS IN GRID INFRASTRUCTURE

Over the next decade, massive grid modernization is anticipated, shifting toward decentralized energy models. Solar panels will be integrated into intelligent energy networks, allowing each consumer to act as both a user and a producer of electricity

TRENDS AND FORECASTS IN SOLAR ENERGY

SOLAR ENERGY AND HYDROGEN TECHNOLOGIES

Ongoing research focuses on integrating solar power plants with green hydrogen production systems. This technology will store excess energy for use in industry, transportation, and heating applications

HYBRID SOLAR INSTALLATIONS

The development of hybrid systems combining photovoltaic and thermal technologies will enable buildings to generate both electricity and heat, reducing reliance on traditional energy sources

ECONOMIC FORECASTS

According to the International Energy Agency, by 2050, solar energy will become the world's primary electricity source, covering over 30% of global energy demand. Falling technology costs and stricter environmental policies will drive the gradual phase-out of fossil fuels

WHY SOLAR ENERGY IS AN ATTRACTIVE INVESTMENT

HIGH PROFITABILITY AND STEADY GROWTH

Solar energy is one of the fastest-growing industries in the global economy. In 2023, investments in solar projects exceeded \$380 billion, and by 2030, this figure is expected to double. Declining technology costs and increasing demand for clean energy make this sector highly lucrative

STABLE DEMAND AND GOVERNMENT SUPPORT

Many governments offer subsidies, tax incentives, and long-term contracts (PPA) for solar energy, ensuring predictable revenue streams with minimal risk for investors

REDUCED VOLATILITY AND CRISIS RESILIENCE

Unlike traditional energy markets, which are highly affected by fluctuations in oil and gas prices, solar power offers stable costs and fixed rates, making it an ideal choice for long-term, low-risk investment strategies

INTEGRATION INTO ESG STRATEGIES

Institutional investors and corporations are increasingly allocating capital to sustainable projects. Solar energy investments not only generate financial returns but also align with Environmental, Social, and Governance (ESG) principles, enhancing their appeal in global financial markets

DIVERSIFICATION OPPORTUNITIES

The solar sector offers various investment options, from direct funding of solar power plants to equity stakes and green bonds in companies that manufacture solar panels, inverters, and energy storage systems

INVESTMENT OPPORTUNITY

By opening a deposit with a minimum investment of \$14,000, your balance will reach \$36,820 in 235 days

Deposit Term: 235 days

Total ROI: 263%

DEL MAR ENERGY INC.

is an american holding company primarily focused on the extraction, processing, and sale of oil

The company also engages in electricity production and distribution; manufacturing, repairing, and leasing electromechanical equipment; designing and constructing wind, solar, and geothermal power plants; extracting coal and gas; and developing oil and gas infrastructure Having started out with just a few oil rigs in 2002, we began developing and manufacturing with our own technologies in 2012

today 91%

of our products are exported to more than 40 countries worldwide

MICHAEL LATHAM Founder/CEO

Michael Latham is the founder and CEO of Del Mar Energy. He established the holding company in 2002 in Texas, successfully building and growing industrial sectors

01 _____

04

NICK KAUFMAN COO (Chief

Operating Officer)

Nick has served as COO since 2018. A Texas native and graduate of the University of Massachusetts, Nick initially worked in law. He first encountered Del Mar Energy in 2013 and officially became a partner in 2018. Nick introduced many of the modernized technologies now used in production

02

STEFAN RUSSO

CIO (Chief Information Officer)

less than five years, he

company director

03

advanced from intern to

Stefan started his internship

at Del Mar Energy in 2016. In

04

04

Motors

04 04

CMO (Chief

Marketing Officer)

studied at a local university

public relations. He began

collaborating with Del Mar

P&G, Gillette, and General

Energy in 2011. Prior to joining

on promoting brands such as

the company, Thomas worked

before moving to New York in

2006 to work in marketing and

